
Articles http://www.informit.com/articles/printerfriendly.asp?p=174217

1 of 4 8/11/2005 3:15 PM

Covert Java: Hacking Non-Public Methods and
Variables of a Class
Date: Jun 4, 2004 By Alex Kalinovsky. Sample Chapter is provided courtesy of Sams.

Learn to hack non-public methods and variables of a class. Alex Kalinovsky covers the
problem of encapsulation, accessing packages and protected class members, and
accessing private class members.

"Anything can be made to work if you fiddle with it. If you fiddle with something long
enough, you'll break it."

Murphy's Technology Laws

In this chapter

The Problem of Encapsulation
Accessing Packages and Protected Class Members
Accessing Private Class Members
Quick Quiz
In Brief

The Problem of Encapsulation

Encapsulation is one of the pillars of object-oriented programming. The purpose of
encapsulation is separation of the interface from implementation and modularity of
application components. It is generally recommended that you make data members private
or protected and provide public accessor and mutator functions (also known as getter and
setter functions). It is also sometimes recommended that you make internal implementation
methods private or public to protect a class from being used incorrectly. Following the
principle of encapsulation helps create a better application, but occasionally it can prove to
be an obstacle for usage that was not foreseen by the class developer.

We will use java.awt.BorderLayout in our experiments. Maybe at some point this will
encourage JavaSoft engineers to add public methods. We will obtain the source code for
BorderLayout from src.jar in the JDK installation directory.

Accessing Packages and Protected Class Members

We will start by demonstrating how to easily access package-visible variables and
methods. Our example uses a package-visible variable, but the technique works equally
well for protected visibility. A variable or method is package visible when no specific
visibility keyword such as public, protected, or private is used for declaration.
BorderLayout stores the component that was added using the BorderLayout.CENTER
constraint in a center variable declared as follows:

package java.awt;

public class BorderLayout implements LayoutManager2, java.io.Serializable {

 ...

 Component center;

}

Recall that package-visible members are accessible to the class that declared them and all
classes within the same package. In our example, any class in the java.awt package can
access the center variable directly. A simple solution therefore is to create a helper class,
AwtHelper, in the java.awt package and use it to access package-visible members of
BorderLayout instances. AwtHelper has a public function that takes in an instance of
BorderLayout and returns the component for a given layout constraint:

package java.awt;

public class AwtHelper {

 public static Component getChild(BorderLayout layout, String key) {

Articles http://www.informit.com/articles/printerfriendly.asp?p=174217

2 of 4 8/11/2005 3:15 PM

 Component result = null;

 if (key == BorderLayout.NORTH)

 result = layout.north;

 else if (key == BorderLayout.SOUTH)

 result = layout.south;

 else if (key == BorderLayout.WEST)

 result = layout.west;

 else if (key == BorderLayout.EAST)

 result = layout.east;

 else if (key == BorderLayout.CENTER)

 result = layout.center;

 return result;

 }

}

Let's write a test class called covertjava.visibility.PackageAccessTest that uses
AwtHelper to obtain the split pane instance from Chat's MainFrame. The following source
code excerpt is what we are mostly interested in:

Container container = createTestContainer();

if (container.getLayout() instanceof BorderLayout) {

 BorderLayout layout = (BorderLayout)container.getLayout();

 Component center = AwtHelper.getChild(layout, BorderLayout.CENTER);

 System.out.println("Center component = " + center);

}

We obtain the layout for the container and, if it is BorderLayout, we use AwtHelper to get the
center component. Chat's MainFrame has the split pane in the center; therefore, if the code
is written correctly, we should see an instance of JSplitPane on the system console.
Running PackageAccessTest, we get the following exception:

java.lang.SecurityException: Prohibited package name: java.awt

The exception is thrown because java.awt is considered to be a system name space that
should not be used by regular classes. This would not have happened if we were trying to
hack a package-visible member of a third-party class, but we have intentionally picked a
system class to illustrate a real-life example. The only potential problem with using this
technique for a nonsystem name space such as com.mycompany.mypackage occurs if the
package is sealed. Adding a helper class to a sealed package requires the same technique
as is explained for adding a patched class in Chapter 5, "Replacing and Patching
Application Classes."

Adding system classes is a little trickier because they are loaded and treated differently
from application classes. Chapter 16, "Intercepting Control Flow," provides a
comprehensive discussion of system classes. For now, though, it would suffice to say that
to add a class to the system package, the class has to be placed on the boot class path. A
directory or JAR file can be prepended or appended to the boot class path using the
-Xbootclasspath parameter to the java command line. Because we already have a patches
subdirectory for the Chat application, we will use it for system classes as well. We modify
build.xml to move the java.lang directory with AwtHelper to distrib/patches and create a
new script (package_access_test.bat) in distrib/bin, as follows:

@echo off

set CLASSPATH=..\lib\chat.jar

java -Xbootclasspath/p:..\patches covertjava.visibility.PackageAccessTest

Running package_access_test.bat produces the following output:

C:\Projects\CovertJava\distrib\bin>package_access_test.bat

Testing package-visible access

Center component = javax.swing.JSplitPane[,0,0,0x0,...]

Having to place classes on the system boot class path makes deployment a little more
involved because it requires modification of the startup script. For example, a Web
application that is deployed into a Web container, such as Tomcat or WebLogic, can no
longer be simply deployed through a console or the application deployment directory. The
script that starts the application server must be modified to include the -Xbootclasspath
parameter. Another disadvantage of this technique is that it does not work for private
members. Last, but not least, adding classes to packages can violate the license
agreement. This is the case with BorderLayout because a section in Sun's Java license
agreement explicitly prohibits adding classes to packages that begin with java. The next
section presents another alternative that solves some of these problems.

Stories From the Trenches - WebCream is a product that converts Java
AWT and Swing applications into interactive HTML Web sites. It does it by

Articles http://www.informit.com/articles/printerfriendly.asp?p=174217

3 of 4 8/11/2005 3:15 PM

emulating a graphical environment for the graphical user interface (GUI)
application running on the server side and capturing and converting the
currently displayed top window to an HTML page. To generate the HTML,
WebCream iterates all containers and tries to mimic Java layouts with HTML
tables. One of the layouts WebCream needs to support is BorderLayout. For
a container with BorderLayout, the HTML rendering module needs to know
which child component has been added to the South section, which one to
the North, and so on. BorderLayout stores this information in the member
variables south, north, and so on, and it even has a getChild() method that
can be used to obtain the component. The problem is that the variables are
declared with package visibility and the getChild method is declared as
private. To get around the absence of public access to BorderLayout's child
components, WebCream engineers had to rely on the hacking techniques
described in this chapter.

Accessing Private Class Members

Private members are accessible only to the class that declares them. That is one of the
ground rules of the Java language that ensures encapsulation. But is it really so? Is it really
enforced all the time? If you said, "Well, this guy is writing about it, so there has to be a
loophole of some sort," you'd be right. The Java compiler enforces the privacy of private
members at compile time. Thus, there can be no static references by other classes to
private methods and variables of a class. However, Java has a powerful mechanism of
reflection that enables querying instance and class metadata and accessing fields and
methods at runtime. Because reflection is dynamic, compile time checks are not applicable.
Instead, Java runtime relies on a security manager—if one exists—to verify that the calling
code has enough privileges for a particular type of access. The security manager provides
enough protection because all the functions of the reflection API delegate to it before
executing their logic. What undermines this protection is the fact that the security manager
is often not set. By default, the security manager is not set, and unless the code explicitly
installs a default or a custom security manager, the runtime access control checks are not
in effect. Even if a security manager is set, it is typically configured through a policy file,
which can be extended to allow access to the reflection API.

If you looked at the BorderLayout class carefully, you might have noticed that it already has
a method that returns a child component based on the position key. Not surprisingly, it is
called getChild and has the following signature:

private Component getChild(String key, boolean ltr)

This sounds like good news because you don't really have to write your own
implementation. The problem is that the method is declared as private and there is no
public method you can use to call it. To leverage the existing JDK code, you must call
BorderLayout.getChild() using the reflection API. We will use the same test structure as in
the previous section. This time, though, instead of using AwtHelper, the test class delegates
to its own helper function (getChild()):

public class PrivateAccessTest {

 public static void main(String[] args) throws Exception {

 Container container = createTestContainer();

 if (container.getLayout() instanceof BorderLayout) {

 BorderLayout layout = (BorderLayout)container.getLayout();

 Component center = getChild(layout, BorderLayout.CENTER);

 System.out.println("Center component = " + center);

 }

 ...

 }

 public static Component getChild(BorderLayout layout, String key) throws Exception {

 Class[] paramTypes = new Class[]{String.class, boolean.class};

 Method method = layout.getClass().getDeclaredMethod("getChild", paramTypes);

 // Private methods are not accessible by default

 method.setAccessible(true);

 Object[] params = new Object[] {key, new Boolean(true)};

 Object result = method.invoke(layout, params);

 return (Component)result;

 }

 ...

}

The getChild() implementation is the core of the technique. It obtains the method object
through reflection and then calls setAccessible(true). A value of true is set to suppress

Articles http://www.informit.com/articles/printerfriendly.asp?p=174217

4 of 4 8/11/2005 3:15 PM

the access control checking and allow method invocation. The rest of the method is plain
reflection API usage. Running covertjava.visibility.PrivateAccessTest produces the
same output you saw in the previous section:

C:\Projects\CovertJava\distrib\bin>private_access_test.bat

Testing private access

Center component = javax.swing.JSplitPane[,0,0,0x0,...]

This was alarmingly easy. We might have to do a little more work if a security manager is
set using System.setSecurityManager or via a command line, which is the case for most
application servers and middleware products. If we run our test passing
-Djava.security.manager to the java command line, we get the following exception:

java.security.AccessControlException: access denied

(java.lang.RuntimePermission accessDeclaredMembers)

For our code to work with a security manager installed, we have to grant the permissions to
access declared members through reflection and to suppress access checks. We do so by
adding a Java policy file that grants these two permissions to our code base:

grant {

 permission java.lang.RuntimePermission "accessDeclaredMembers";

 permission java.lang.reflect.ReflectPermission "suppressAccessChecks";

};

Finally, we create a new test script (private_access_test.bat) in the distrib\bin directory
that adds a command-line parameter (java.security.policy) to install our policy file:

set CLASSPATH=..\lib\chat.jar

set JAVA_ARGS=%JAVA_ARGS% -Djava.security.manager

set JAVA_ARGS=%JAVA_ARGS% -Djava.security.policy=../conf/java.policy

java %JAVA_ARGS% covertjava.visibility.PrivateAccessTest

If a policy file is already installed, our grant clause needs to be inserted into it. Java security
files allow inclusion of additional policy files using the policy.url.n attribute. See Chapter
7, "Manipulating Java Security," for a detailed discussion of Java security and policy files.

The technique that relies on the reflection API can be used to access package and
protected members as well. This makes inserting helper classes into third-party packages
unnecessary. The drawback of the reflection API is that it is notoriously slow because it has
to deal with runtime information and might have to go through a number of security checks.
When speed is an issue, it is preferable to rely on the helper classes for package and
protected members. Yet another alternative is serializing an instance into a byte array
stream and then parsing the stream to obtain the values of the member variables.
Obviously, this is a tedious process that does not work for transient fields.

Quick Quiz

Which technique can be used to obtain a value of a protected variable?1.

Which technique can be used to obtain a value of a private variable?2.

What are the advantages and disadvantages of each technique?3.

In Brief

Methods and variables that are not declared public can still be accessed.

A member with package or protected visibility can be accessed by inserting a helper
class into its package or using the reflection API.

A member with private visibility can be accessed using the reflection API.

If a security manager is installed, the Java policy needs to be altered to allow
unrestricted access for the reflection API.

© 2005 Pearson Education, Inc. InformIT. All rights reserved.
800 East 96th Street Indianapolis, Indiana 46240

